Package: biglmm 0.9-3

biglmm: Bounded Memory Linear and Generalized Linear Models

Regression for data too large to fit in memory. This package functions exactly like the 'biglm' package, but works with later versions of R.

Authors:Thomas Lumley [aut], Christophe Dutang [ctb], Alan Miller [ctb], Morven Gentleman [ctb], Mark Purver [cre]

biglmm_0.9-3.tar.gz
biglmm_0.9-3.zip(r-4.5)biglmm_0.9-3.zip(r-4.4)biglmm_0.9-3.zip(r-4.3)
biglmm_0.9-3.tgz(r-4.5-x86_64)biglmm_0.9-3.tgz(r-4.5-arm64)biglmm_0.9-3.tgz(r-4.4-x86_64)biglmm_0.9-3.tgz(r-4.4-arm64)biglmm_0.9-3.tgz(r-4.3-x86_64)biglmm_0.9-3.tgz(r-4.3-arm64)
biglmm_0.9-3.tar.gz(r-4.5-noble)biglmm_0.9-3.tar.gz(r-4.4-noble)
biglmm_0.9-3.tgz(r-4.4-emscripten)biglmm_0.9-3.tgz(r-4.3-emscripten)
biglmm.pdf |biglmm.html
biglmm/json (API)
NEWS

# Install 'biglmm' in R:
install.packages('biglmm', repos = c('https://markpurver.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/markpurver/biglmm/issues

On CRAN:

Conda:

generalised-linear-modelsfortran

2.00 score 1 stars 6 scripts 664 downloads 5 exports 1 dependencies

Last updated 5 months agofrom:0a3e63c4d0. Checks:12 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 22 2025
R-4.5-win-x86_64OKMar 22 2025
R-4.5-mac-x86_64OKMar 22 2025
R-4.5-mac-aarch64OKMar 22 2025
R-4.5-linux-x86_64OKMar 22 2025
R-4.4-win-x86_64OKMar 22 2025
R-4.4-mac-x86_64OKMar 22 2025
R-4.4-mac-aarch64OKMar 22 2025
R-4.4-linux-x86_64OKMar 22 2025
R-4.3-win-x86_64OKMar 22 2025
R-4.3-mac-x86_64OKMar 22 2025
R-4.3-mac-aarch64OKMar 22 2025

Exports:bigglmbigglm.data.framebigglm.functionbigglm.RODBCbiglm

Dependencies:DBI

Readme and manuals

Help Manual

Help pageTopics
Bounded memory linear regressionAIC.bigglm bigglm bigglm,ANY,DBIConnection-method bigglm.data.frame bigglm.function bigglm.RODBC bigglm.SQLiteConnection deviance.bigglm family.bigglm vcov.bigglm
Bounded memory linear regressionAIC.biglm biglm coef.biglm deviance.biglm print.biglm print.summary.biglm summary.biglm update.biglm vcov.biglm
Predictions from a biglm/bigglmpredict.bigglm predict.biglm